Hyperspectral Imaging - An innovation in Agriculture Sector

Author(s)

Muhammad Roman , Qadeer Ahmad , Abdul Majid , Sarwan Khan , Ahmad Raza Shahid , Muhammad Ali , Muhammad Abdul Rehman Saeed ,

Download Full PDF Pages: 32-36 | Views: 591 | Downloads: 203 | DOI: 10.5281/zenodo.3483266

Volume 3 - February 2019 (02)

Abstract

Hyperspectral imaging is an emerging technique in the agriculture sector to obtain spectral and spatial data of plant without destruction of plant parts. Traditional sampling ways are a destructive method that damages the plant parts and required more time. This is the best method to get results from a large area within minimum time. We can obtain our research goals without physically effecting the plant parts.  Nowadays, its application includes mapping of vegetation, crop diseases and pest attack, crop stress and yield analysis, plant parts identification, nutrients measurements and exposure of impurities. Agriculture elements consist of different chemical and physical compositions, in the response with near-infrared spectroscopy, plant parts will reflect, absorb, scatter or emit waves in different ways at a specific wavelength. These variations are characterizing with spectral signs of that part. The purpose of literature is to provide basic information about the role of hyperspectral imaging and its application in the agriculture sector.

Keywords

Hyperspectral Imaging - HIS Wavelength & Spectral -Application in Agriculture 

References

                        i.            Shaw, G., Manolakis. D. (2002) Signal processing for hyperspectral image exploitation. IEES Signal Process. Mag,. 16 (1): 12-16

      ii.            Clark, R.N. and Swayze, G.A. (1995) Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: The USGS tricorder algorithm. Paper presented at the Fifth Annual JPL Airborne Earth Science Workshop, In Green, R.O., ed. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23-26 January, JPL Publication, 95(1): 39-40.

    iii.            Ben-Dor, E., Patin, K., Banin, A., and Karnieli, A. (2002) Mapping of several soil properties using DAIS-7915 hyperspectral scanner data. A case study over clayey soils in Israel. Int. J. Rem. Sens., 23 (6): 1043-1062

     iv.            Tatzer, P., Wolf, M., and Panner, T. (2005) Industrial application for inline material sorting using hyperspectral imaging in the NIR range. R. Time Imag., 11: 99-107.

       v.            Kellicut, D.C., Weiswasser, J.M., Arora, S., Freeman, J.E., Lew, R.A., Shuman, C., Mansfield, J.R., and Sidawy, A.N. (2004) Emerging technology: Hyperspectral imaging. Perspect. Vasc. Surg., 16: 53-57.

     vi.            Harvey, A.R., Lawlor, J., McNaught, A.I., and Fletcher-Holmes, D.W. (2002) Hyperspectral imaging for the detection of retinal disease. Proc. SPIE, 4816: 325-335.

   vii.            Levenson, R.M., Wachman, E.S., Niu, W., and Farkas, D.L. (1998) Spectral imaging in biomedicine: A selective overview. Proc. SPIE, 3438: 300-312.

 viii.            Landgrebe, D. (2002) Hyperspectral Image data analysis. IEEE Signal Process. Mag., 19:

     ix.            Johnson, B., Joseph, R., Nischan, M., Newbury, A., Kerekes, J., Barclay, H., Willard, B., and Zayhowski, J. (1999) A compact, active hyperspectral imaging system for the detection of concealed targets. Proc. SPIE, 3710: 144-153.

       x.            Broge, N.H. and Leblanc, E. (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Rem. Sens. Environ. 76 (2000): 156-172.

     xi.            El-Shikha, D., Waller, P., Hunsaker, D., Clarke, T., and Barnes, E. (2007) Ground-based remote sensing for assessing water and nitrogen status of broccoli. Agr. Water Manag., 92 (3): 183-193

   xii.            Yang, C, Everitt, J.H., and Davis, M.R. (2003) A CCD Camera-based hyperspectral imaging system for stationary and airborne applications. Geocarto International, 18 (2): 71-80.

 xiii.            Fernandez Pierna, J.A., Michotte Renier, A., Baeten, V., and Dardenne, P. (2004) IR camera and chemometrics (S VM): The winner combination for the detection of MBM. Paper presented at the Stratfeed Symposium, Namur, Belgium, 16-18 June, 2004.

 xiv.            Gowen, A.A., O'Donnell, C.P., Cullen, P.J., Downey, G., and Frias, J.M. (2007) Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Tech., 18: 590-598  

   xv.            Ahmed, M. R., Yasmin, J., Mo, C., Hoonsoo, L., Kim, M. S., Hong, S. J., & Cho, B. K. (2016). Outdoor Application of Hyperspectral Imaging Technology for Monitoring Agriculture Crops: A Review. Journal of Biosystems Engineering

 xvi.            Kruse, F. A,. AND Lefkoff, A.b,. Knowledge-based geologic mapping with imaging spectrometer: Remote Sensing Reviews, Special Issue on NASA Innovative Research Program (IRP) results, 1993, v. 8, p. 3-28

xvii.            Kruse, F. A., Lefkoff, A.B., Boardman, J. B., Heidebrecht, K.B., Shapiro, A. T., Barloon, P.J., and Goetz, A. F. H,. The Spectral Image Processing System (SIPS) – Interactive Visualization and Spectrometer Data: Remote Sensing of Environment, Special Issues on AVIRIS, May-June 1993, v.44, p. 145-163

 

xviii.            Wang L., “Invasive species spread mapping using multi-resolution remote sensing data” The international Archives of the Sciences, Vol. XXXXVII. Part B2. Beijing 2008

 xix.            Lacar, F.M., et al., Use of hyperspectral imagery for mapping grape varieties in the Barossa Valley, South Australia, Geoscience and remote sensing symposium (IGARSS'01) – IEEE 2001 International, vol.6 2875-2877p. 

   xx.            illing, A.K., et al., (2006) Remote sensing to detect nitrogen and water stress in wheat, The Australian Society of Agronomy

Cite this Article: