Comparison of a Polyherbal Mixture with a Rumen-Protected Lysine on Lamb Growth, Protozoan Count and Blood Chemistry

Author(s)

Augusto Lizarazo Chaparro , Angelica Lorenzana Moreno , Maria de la Torre Hernandez , Fernando Plata Perez , German Mendoza Martinez ,

Download Full PDF Pages: 32-39 | Views: 183 | Downloads: 75 | DOI: 10.5281/zenodo.3986575

Volume 4 - April 2020 (04)

Abstract

The objective of this study was to compare doses of a polyherbal mixture (Phaseolus mungo with Linum usitatissimum, OptiLysine® from Nuproxa México, Indian Herbs) and from rumen-protected lysine (RPL; AjiPro®-L) on lamb growth, changes in rumen protozoa and blood biochemistry. Fifty-six Pelibuey x East Friesian lambs (initial live weight 21.97 kg ± 4.29) were randomly assigned to treatments consisting of a control group, or three daily doses of lysine sources: polyherbal mixture (5, 10 and 15 g/d) and RPL (5, 10 and 15 g/d) dosed daily orally for 45 days. The lambs were fed individually with a basal ration (13.2% CP, 2.26 Mcal ME/kg) with an estimated duodenal flow in the basal diet of 6.45 g/d of lysine and 2.32 g/d of methionine. The doses of both sources did not affect the productive performance with the exception of the intake that showed a quadratic response with the RPL (p<0.05). The polyherbal mixture linearly stimulated the Entodinios population (p<0.10) and reduced the Holotrichs population (p<0.05), while the RPL linearly reduced the Holotrichs population (p<0.05). In blood biochemistry, the polyherbal mixture only affected lactic dehydrogenase (quadratic effect p<0.05) and RPL increased alkaline phosphatase (linear p<0.05) and decreased globulin (quadratic effect p<0.05). The results indicate that the polyherbal mixture and the rumen protected lysine did not improve the growth of the lambs, but the protozoan populations of the rumen were affected.

Keywords

Lambs, Lysine, Feed plant additive

References

               i.            Abdelrahman, M.M., AL-Rayyan, N.A.M.., Awawdeh, F.T. and Alazzeh A.Y. The Effect of Dietary Levels of Zinc-Methionine on the Performance of Growing Awassi Lambs. (2003). Pakitstan Journal of Biological Sciences. 6 (11) 979-983. DOI: 10.3923/pjbs.2003.979.983

                ii.   Acosta, E.S., Cerrilla, M.E.O., Martínez, G.D.M., Valdez, O.D.M., and Dios, S.E.B. (2012). Rastrojo de maíz tratado con urea y metionina protegida en dietas para ovinos en crecimiento. Interciencia, 37:395-399.

              iii.   Alonso-Mélendez, E., Mendoza, G.D., Castrejón-Pineda, F.A., and Ducoing-Watty, A.E. (2016). Milk production in dairy goats supplemented with different levels of ruminally protected methionine. Journal of Dairy Research, 83:148-150. doi:10.1017/S002202991600011X.

              iv.   Araújo, C.M., De Lima M.J.G., Oliveira, K.A., Silva, A.L., and Santos, S.M.T. (2019). Levels of protected lysine and methionine in the diet of lambs: Nutritional parameters and protein metabolites. Semina:Ciencias Agrarias, 40:3709-3718. doi:10.5433/1679- 0359.2019v40n6Supl3p3709.

                v.   Ardaillon, P., P. Antant, P. Bourrain, and A. Cartillier. (1989). Compositions for coating feedstuff additives thus coated. United States Patent, US 4,877,621.

              vi.   Ardaillon, P. and C. Franzoni. (1992). Enzymatically degradable coating compositions for feed additives intended for ruminants. United States Patent, US 5,098,719.

            vii.   Beebee, T.J.C., and Carty, D.S. (1983). A study of lactate dehydrogenase levels and turnover rates during postnatal development in the rat. BBA - General Subjects, 757:209-218. doi:10.1016/0304-4165(83)90111-3.

          viii.   Cunnane, S.C., Ganguli, S., Menard, C., Liede, A.C., Hamadeh, M.J., Chen, Z.Y., Wolover T.M.S., and Jenkins, DJ. (1993). High α-linolenic acid flaxseed (Linum usitatissimum): some nutritional properties in humans. British Journal of Nutrition, 69:443- 453.

              ix.   D´agosto, M. and Carneiro, M.E. (1999) Evaluation of lugol solution used for counting rumen ciliates. Revista brasileira de Zoologia. 16 (3): 725-729.

                x.   Dehority, B.A. (1984). Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Applied and Environmental Microbiology, 48:182-185.

              xi.   Diaz, H.L., Karnati, S.K.R., Lyons, M.A., Dehority, B.A., and Firkins, J.L. (2014). Chemotaxis toward carbohydrates and peptides by mixed ruminal protozoa when fed, fasted, or incubated with polyunsaturated fatty acids. Journal of Dairy Science, 97:2231-2243. doi:10.3168/jds.2013-7428.

            xii.   Dufour, D.R., Lott, J.A., Nolte, F.S., Gretch, D.R., Koff, R.S., and Seeff, L.B. (2000). Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clinical Chemistry, 46:2027-2049. doi:10.1093/clinchem/46.12.2027.

          xiii.   Figueroa, J.L., Martinez, J.A., Sanchez-Torres, M.T., Cordero, J.L., Martinez, M., Valdez, V.M., and Ruiz, A. (2019). Evaluation of reduced amino acids diets added with protected protease on productive performance in 25-100 kg barrows. Austral Journal of Veterinary Sciences, 51:53-60. doi:10.4067/S0719-81322019000200053.

           xiv.   Flores, A., Mendoza, G., Pinos-Rodriguez, J.M., Plata, F., Vega, S., and Bárcena, R. (2009). Effects of rumen-protected methionine on milk production of dairy goats. Italian Journal of Animal Science, 9:271-275.

             xv.   Han, I.K., Ha, J.K., Lee, S.S., Ko, Y.G., Lee, H.S. (1996). Effect of supplementing rumen protected lysine and methionine on ruminal characteristics and nutrient digestibility in sheep. Asian-Australasian Journal of Animal Sciences, 9:223-229. doi:10.5713/ajas.1996.223.

           xvi.   Harper, A.E., Benevenga, N.J., and Wohlhueter, R.M. (1970). Effects of ingestion of disproportionate amounts of amino acids. Physiological Reviews, 50:428-558. doi:10.1152/physrev.1970.50.3.428.

         xvii.   Hussein, H.S., and Berger, L.L. (1995). Feedlot performance and carcass characteristics of Holstein steers as affected by source of dietary protein and level of ruminally protected lysine and methionine. Journal of Animal Science, 737:3503-3509. doi:10.2527/1995.73123503x.

       xviii.   Jouany, J.P and Morgavi, D.P. (2007). Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal 1:1443–1466. doi:10.1017/S1751731107000742.

           xix.   Kavitha, B., Hemalatha, G., Kanchana, S., Sundaram, S.P., and Sivasubramaniam, K. (2013). Physicochemical, functional, pasting properties and nutritional composition of selected black gram (Phaseolus mungo L.) varieties. Indian Journal of Science and Technology, 6:5386-5394.

             xx.   Lara, B.A., Martínez, G.D.M., Gama, J.R.B., Palencia, L.L.L., Torres, M.T.S., Bojalil, C.M.G., and Oseguera, J.A. (2003). Degradabilidad ruminal in situ e in vitro de la metionina protegida. Revista Mexicana de Ciencias Pecuarias, 41:91-103.

           xxi.   Lara, A., Mendoza, G.D., Landois, L., Barcena, R., Sánchez-Torres, M.T., Rojo, R., Ayala, J., and Vega, S. (2006). Milk production in Holstein cows supplemented with different levels of ruminally protected methionine. Livestock Science, 105:105-108. doi:10.1016/j.livsci.2006.04.032.

         xxii.   Mendoza-Nazar, P., Mendoza-Martínez, G.D., Herrera-Haro, J., Ruiz-Sesma, B., Bárcena-Gama, R., and Tarango-Arámbula, L. (2012). Effect of ruminally protected methionine on body weight gain and growth of antlers in red deer (Cervus elaphus) in the humid tropics. Tropical animal health and production, 44:681-687. doi:10.1007/s11250-011- 9956-4.

       xxiii.   Mejía-Delgadillo, M.A., Mendoza, G.D., Lee-Rangel, H.A., Osorio-Terán, A.I., Hernandez-García, P.A. (2019) Effect of an herbal lysine source on lamb’s growth. Rev. Acad. Ciênc. Anim. 2019; 17. 1:199.

       xxiv.   Mertenat, D., Cero, M.D., Vogl, C.R., Ivemeyer, S., Meier, B., Maeschli, A., Hamburger, M., and Walkenhorst, M. (2020). Ethnoveterinary knowledge of farmers in bilingual regions of switzerland – is there potential to extend veterinary options to reduce antimicrobial use? Journal of Ethnopharmacology, 246. doi:10.1016/j.jep.2019.112184.

         xxv.   Mirman, D. (2014). Growth Curve Analysis and Visualization Using R. Chapman & Hall/CRC The R Series. CRC Press. Boca Raton, FL. 170 p.

       xxvi.   Nakamura, T., Klopfenstein, T.J., Gibb, D.J., and Britton, R.A. (1994). Growth efficiency and digestibility of heated protein fed to growing ruminants. Journal of Animal Science, 72:774-782. doi:10.2527/1994.723774x.

     xxvii.   NRC. (2007). Nutriment Requirements of Sheep. 6th edn, pp. 112 National Academy Press Washington, D.C. USA.

   xxviii.   Ortega, C.M.E. and Mendoza, M.G.D. (2003). Starch digestion and glucose metabolism in the ruminant: A review. Interciencia. 28:380-386.

       xxix.   Ponnampalam, E.N., Egan, A.R., Sinclair, A.J., and Leury, B.J. (2005). Feed intake, growth, plasma glucose and urea nitrogen concentration, and carcass traits of lambs fed isoenergetic amounts of canola meal, soybean meal, and fishmeal with forage based diet. Small Ruminant Research, 58:245-252. doi:10.1016/j.smallrumres.2004.10.007.

         xxx.   Prado, I.N., Campo, M.M., Muela, E., Valero, M.V., Catalan, O., Olleta, J.L and Sañudo, C. (2015). Effects of castration age, protein level and lysine/methionine ratio in the diet on colour, lipid oxdation and meat acceptability of intensively reared Friesian steers. Animal, 9:8 1423-1430. doi:10.1017/S1751731115000580

       xxxi.   Rodríguez-Guerrero, V., Lizarazo, A. C., Ferraro, S., Suárez, N., Miranda, L. A., and Mendoza, G. D. (2018). Effect of herbal choline and rumen-protected methionine on lamb performance and blood metabolites. South African Journal of Animal Sciences, 48:427-434. doi:10.4314/sajas.v48i3.3.

     xxxii.   Russell, K.E., and Roussel, A.J. (2007). Evaluation of the ruminant serum chemistry profile. Veterinary Clinics of North America - Food Animal Practice, 23:403-426. doi:10.1016/j.cvfa.2007.07.003.

   xxxiii.   Saastamoinen, M., and Särkijärvi, S. (2020). Effect of linseed (Linum usitatissimum) groats-based mixed feed supplements on diet nutrient digestibility and blood parameters of horses. Animals, 10: 272. doi:10.3390/ani10020272.

    xxxiv.   Savary I.C., Hoskin S.O., Dennison N., and Lobley G.E. (2001). Lysine metabolism across the hindquarters of sheep; effect of intake on transfers from plasma and red blood cells. British Journal of Nutrition, 85:565-573. doi:10.1079/BJN2000318.

      xxxv.   Sobha, K., and Susan, T.A. (2014). Evaluation of amino acid composition of Phaseolus mungo (black gram) and Labeo rohita (rohu) in the perspective of human dietary requirements. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5:542- 549.

    xxxvi.   Socha, M. T., D. E. Putnam, B. D. Garthwaite, N. L. Whitehouse, N. A. Kierstead, C. G. Schwab, G. A. Ducharme, and J. C. Robert (2005). Improving intestinal amino acid supply of pre- and postpartum dairy cows with rumen-protected methionine and lysine. J. Dairy Sci. 88:1113-1126.

  xxxvii.   Sugino, T., Kawakita, Y., Fukumori, R., Hasegawa, Y., Kojima, M., Kangawa, K., Obitsu T., and Taniguchi, K. (2010). Effects of glucose and amino acids on ghrelin secretion in sheep. Animal Science Journal, 81:199-204. doi:10.1111/j.1740- 0929.2009.00733.x.

  xxxviii.            Swanepoel, N., Robinson, P.H and Erasmus, L.J. (2010). Amino acid needs of lactating dairy cows: Impact of feeding lyisine in a ruminally protected form on productivity of lactating dairy cows.  Animal Feed Science and Technology. 157. 79-94. doi:10.1016/j.anifeedsci.2010.02.008.

    xxxix.   Szerlauth A., Muráth S., Viski S., and Szilagyi I. (2019). Radical scavenging activity of plant extracts from improved processing. Heliyon, 5:e02763. doi:10.1016/j.heliyon.2019.e02763.

              xl.   Vyas, D., and Erdman, R.A. (2009). Meta-analysis of milk protein yield responses to lysine and methionine supplementation. Journal of Dairy Science, 92:5011-5018. doi:10.3168/jds.2008-1769.

            xli.   Watanabe, K., Sato, H., Kobayashi, T., Katoh, K., and Obara, Y. (2003). Determination of intestinal disappearance of lysine and methionine derived from ruminally protected lysine and methionine in Holstein heifers. Asian-Australasian Journal of Animal Sciences, 16:549- 554. doi:10.5713/ajas.2003.549.

          xlii.   Zinn, R.A., Calderón, J.F., Corona, L., Plascencia, A., Montaño, M.F., and Torrentera, N. (2007). Phase feeding strategies to meet metabolizable amino acid requirements of calf-fed Holstein steers. Professional Animal Scientist, 23:333-339. doi:10.15232/S1080- 7446(15)30986-4

Cite this Article: