Antibacterial Activity of the Excretory/Secretory Products of Third Instar Larvae of SARCOPHAGA aegyptiaca against Different Bacterial Strains(SARCOPHAGA : DIPTERA)

Author(s)

Nancy Taha Mohammed , Doaa Hassan Abdel-Salam , Mohamed Salah Mohamed , Ahmed S. El-Ebiarie ,

Download Full PDF Pages: 62-70 | Views: 144 | Downloads: 55 | DOI: 10.5281/zenodo.3710773

Volume 4 - February 2020 (02)

Abstract

The present study fractionate the excretory/secretory products of third instar larvae of Sacrophaga aegyptiaca .The results revealed the presence of 35 protein fractions with different molecular weights ranging from 4.81 to 388.13 KDa in excretory/secretory products of third instar larvae of Sarcophag aaegyptiaca.Only 3 protein fractions (number 22, 23 and 24) showed antibacterial activity against two strains of gram positive bacteria (Streptococcus pneumonia and Staphylococcus aureus) and against two strains of gram negative bacteria (Pseudomonas aeruginosa and Escherichia coli) and these 3 protein fractions show different molecular weights . The separated protein fraction number 22 showed protein band at 41.16 KDa, separated protein fraction number 23 showed protein bands at 38.63 KDa and separated protein fraction number 24 showed protein band at 25.01 KDa. Also, the minimum inhibitory concentration was determined for each bacterial strain and it is similar in case of Staphylococcus aureus and Escherichia coli (1.95 µg/ml). The Minimum inhibitory concentration (MIC) for Streptococcus pneumonia is 7.81µg/ml and that of Pseudomonas aeruginosa is 31.25µg/ml. 

Keywords

Sarcophagaaegyptiaca, Antibacterial activity, Gram +ve bacteria,  Gram -ve bacteria.

References

 

  1. Andersen, A.S., Sandvang, D., Schnorr, K.M., Kruse, T., Neve, S., Joergensen, B., Karlsmark, T. and Krogfelt, K.A. (2010a).A novel approach to the antimicrobial activity of maggot debridement therapy.Journal of Antimicrobial Chemotherapy, 65 (8): 1646–1654.
  2. Andersen, A.S., Jorgensen, B., Bjarnsholt, T., Johansen, H., Karlsmark, T., Givskov, M. and Krogfelt, K.A. (2010b).Quorum Sensing Regulated Virulence factors in Pseudomonas aeruginosa are toxic to Luciliasericata maggots. Microbiology, 156 (2): 400–407.
  3. Bovera F., Loponte R., Marono S., Piccolo G., Parisi G., Iaconisi V., Gasco L., Nizza A., (2016). Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J. Anim. Sci. 94, 639–647, https://doi.org/10.2527/jas.2015-9201
  4. Bexfield, A., Nigam, Y., Thomas, S. and Ratcliffe, N.A.  (2004). Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Luciliasericata and their activity against methicillin-resistant Staphylococcus aureus.Microbes and Infection, 6 (14): 1297–304.
  5. Bulet P., Stöcklin R., (2005). Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12, 3–11, https://doi.org/10.2174/0929866053406011
  6. Coyne L.A., Latham S.M., Williams N.J., Dawson S., Donald I.J., Pearson R.B., Smith R.F., Pinchbeck G.L., (2016). Under­standing the culture of antimicrobial prescribing in agriculture: a qualitative study of UK pig veterinary surgeons. J. Antimicrob. Chemother. 71, 3300–3312, https://doi.org/10.1093/jac/dkw300
  7. Cunliffe, R.N. and Mahida, Y.R. (2004).Expression and regulation of antimicrobial peptides in the gastro-intestinal tract.Journal of Leucocyte Biology, 75: 49–58.
  8.   Gabre, R.M., Adham, F.K. and Hsin, C. (2005). Life table of Chrysomya megacephala(Fabricius) (Diptera: Calliphoridae). Acta Oecologica, 27, 179–183.
  9. Huberman, L., Gollop, N., Mumcuoglu, K.Y., Breuer, E., Bhusare, S.R., Shai, Y. and Galun, R. (2007a). Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Medical and Veterinary Entomology, 21: 127–131.
  10. Huberman, L., Gollop, N., Mumcuoglu, K.Y., Block, C. and Galun, R. (2007b). Antibacterial properties of whole body extracts and haemolymph of Luciliasericata maggots.Journal of Wound Care, (16) 3:123-127.
  11. Hwang, J.S.,  Lee, J.,  Kim, Y.T.,  Bang, H.S., Yun, E. Y., Kim, S.R., Suh, H.J., Kang, B.R., Nam, S.H., Joen, J., Kim, I. and Lee, D.G. (2009). Isolation and characterization of a defensin-like peptide (Coprisin) from the dungbeetle, Copristripartitus. International Journal of Peptides, 2009: 1–5. 
  12. Jaklic, D., Lapanje, A., Zupancic, K., Smrke, D. and Gunde-Cimerman, N. (2008).Selective antimicrobial activity of maggots against pathogenic bacteria.Journal of Medical Microbiology, 57: 617–625.
  13. Józefiak D., Józefiak A., Kierończyk B., Rawski M., ?wi?tkiewicz S., D?ugosz J., Engberg R.M., (2016). Insects – a natural nutrient source for poultry – a review. Ann. Anim. Sci. 16, 297–313, https://doi.org/10.1515/aoas-2016-0010
  14. Kerridge, A., Lappin-Scott, H. and Stevens, J.R. (2005).Antibacterial properties of larval secretions of the blowfly, Luciliasericata.Medical and Veterinary Entomology, 19: 333–337.
  15. Landers T.F., Cohen B., Wittum T.E., Larson E.L., (2012). A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 127, 4–22
  16. Li Y., Xiang Q., Zhang Q., Huang Y., Su Z., (2012). Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides 37, 207–215, https://doi.org/10.1016/j.peptides.2012.07.001
  17. Liang, J.F. and Kim, S.C. (1999). Not only the nature of peptide but also the characteristics of cell membrane determine the antimicrobial mechanism of a peptide. Journal of peptide research, 53: 518–522.
  18. Makkar H.P.S., Tran G., Heuzé V., Ankers P., (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 197, 1–33, https://doi.org/10.1016/j.anifeedsci.2014.07.008
  19. Melo, M.N., Ferre, R. and Castanho, M.A. (2009). Antimicrobial peptides:linking partition, activity and high membranebound concentrations. Nature Reviews Microbiology, 7: 245–250.
  20. Merril, C.R. (1990). Gel-staining techniques in guide to protein purification. In: Deutscher, M.P. (Eds.), Methods in Enzmyology. Vol. 182. Academic Press, San Diego, New York, pp. 894.
  21. Moch, D., Fleischmann, W. and Russ, M. (1999). The BMW (biosurgical mechanical wound treatment) in diabetic foot. ZentralblChir, 124: 69–72.
  22. Mumcuoglu, K.Y. (2001). Clinical applications for maggots in wound care. American Journal of Clinical Dermatology, 2 (4): 219–27.
  23. Ratcliffe N.A., Mello C.B., Garcia E.S., Butt T.M., Azambuja P., (2011). Insect natural products and processes: New treatments for human disease. Insect Biochem. Mol. Biol. 41, 747–769, https://doi.org/10.1016/j.ibmb.2011.05.007
  24. Rayaprolu, S., Wang, Y., Kanost, M.R., Hartson, S. and Jiang, H. (2010). Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manducasexta.Developmental and Comparative immunology, 34: 638–647.
  25. Reddy, K., Yedery, R. and Aranha, C. (2004).Antimicrobial peptides: premises and promises. International Journal of Antimicrobial Agents, 24: 536–547.
  26. Richards, O.W. and Davies, R.G. (1977).Imms' General Textbook of Entomology: Volume 1, Structure, Physiology and Development Volume 2, Classification and Biology. Berlin, Springer. Available from: https://en.wikipedia.org/wiki/Flesh_fly (accessed 20 April 2015).
  27. Roback, S.S. (1956). The Evolution and taxonomy of the Sarcophaginae (Diptera, Sarcophagidae). The Quarterly Review of Biology, 31: 309–310.
  28. Sánchez-Muros M.J., Barroso F.G., Manzano-Agugliaro F., (2014). Insect meal as renewable source of food for animal feeding: a review. J. Clean. Prod. 65, 16–27, https://doi.org/10.1016/j.jclepro.2013.11.068
  29. Song, K.J., Park, B.R., Kim, S. and Park, K. (2010). Molecular characterization of anionic defensin-?like peptide in immune response of silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Genes and Genomics, 32: 447–453.
  30. Steenvoorde, P. and Jukema, G.N. (2004).The antimicrobial activity of maggots: in vivo results. Journal of Tissue Viability, 14: 97–101.
  31. Taha, N. (2015a). Fractionation and purification of bioactive peptides in excretory / secretory products of third instar larvae of Chrysomyamegacephala (Calliphoridae: Diptera). International Journal of Applied and Pure Science and Agriculture, 1 (8): 129–136.
  32. Toke, O. (2005).Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers, 80: 717–735.
  33. Thomas, S., Andrew, A.M., Hay, N.P. and Bourgoise, S. (1999).The antimicrobial activity of maggot secretion; results of preliminary study.Journal of Tissue Viability, 9 (4): 127–132.
  34. Van der Plas, M.J., Jukema, G.N., Wai, S., Dogterom, Ballering, H.C.,Lagendijk, E.L., van-Gulpen, C., van Dissel, J.T., Bloemberg, G.V. and Nibbering, P.H. (2008). Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 61: 117–122.
  35. Wang S., Zeng X., Yang Q., Qiao S., (2016). Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci. 17, 603–614, https://doi.org/10.3390/ijms17050603
  36. Xiao H., Shao F., Wu M., Ren W., Xiong X., Tan B., Yin Y.,( 2015a). The application of antimicrobial peptides as growth and health promoters for swine. J. Anim. Sci. Biotechnol. 6, 19, https://doi.org/10.1186/s40104-015-0018-z
  37. Xiao H., Tan B.E., Wu M.M., Yin Y.L., Li T.J., Yuan D.X., Li L., (2013a). Effects of composite antimicrobial peptides in weanling pig­lets challenged with deoxynivalenol: II. Intestinal morphol­ogy and function. J. Anim. Sci. 91, 4750–4756, https://doi.org/10.2527/jas.2013-6427
  38. Xiao H., Wu M.M., Shao F.Y. et al., (2015b). Metabolic profiles in the response to supplementation with composite antimi­crobial peptides in piglets challenged with deoxynivale­nol. J. Anim. Sci. 93, 1114–1123, https://doi.org/10.2527/jas.2014-8229
  39. Xiao H., Wu M.M., Tan B.E., Yin Y.L., Li T.J., Xiao D.F., Li L., (2013b). Effects of composite antimicrobial peptides in weanling pig­lets challenged with deoxynivalenol: I. Growth performance, immune function, and antioxidation capacity. J. Anim. Sci. 91, 4772–4780, https://doi.org/10.2527/jas.2013-6426
  40. Yi H.-Y., Chowdhury M., Huang Y.-D., Yu X.-Q., (2014). Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807–5822, https://doi.org/10.1007/s00253-014-5792-6
  41. Yoon J.H., Ingale S.L., Kim J.S., Kim K.H., Lee S.H., Park Y.K., Lee S.C., Kwon I.K., Chae B.J., (2014). Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in wean­ling pigs. Livest. Sci. 159, 53–60, https://doi.org/10.1016/j.livsci.2013.10.025
  42. Yoon J.H., Ingale S.L., Kim J.S., Kim K.H., Lohakare J., Park Y.K., Park J.C., Kwon I.K., Chae B.J., (2013). Effects of dietary sup­plementation with antimicrobial peptide-P5 on growth perfor­mance, apparent total tract digestibility, faecal and intestinal microflora and intestinal morphology of weanling pigs. J. Sci. Food Agric. 93, 587–592, https://doi.org/10.1002/jsfa.5840
  43. Zumpt, F. (1965). Myiasis in man and animals in the Old World. London, Butterworths. 267 pp.

 

Cite this Article: