Thermo-tolerant and thermo-sensitive characterization of selected okra genotypes at seedling stage


Muhammad Wajid Khan , Rashad Mukhtar Balal , Zahoor Hussain , Muhammad Adnan Shahid ,

Download Full PDF Pages: 01-22 | Views: 755 | Downloads: 263 | DOI: 10.5281/zenodo.2575949

Volume 2 - August 2018 (08)


Twenty different okra genotypes were screened out at seedling stage under different temperature regimes (25 °C (control), 40 °C and 45 °C) to categorize them as thermo-tolerant and thermo-sensitive. On the basis of morphological, physiological, gasses exchange, enzymatic and ionic characteristics thermo-tolerant and as thermo-sensitive okra genotypes were identified. The results revealed that heat stress caused a significant reduction in morphological (root/shoot length, plant fresh/dry weight, leaf area) and physiological attributes (photosynthesis, stomatal conductance, transpiration rate) in both thermo-tolerant and thermo-sensitive okra genotypes. Whereas, thermo-tolerant genotypes showed less reduction in morphological and physiological attributes as compared to thermo-sensitive and vice versa. Antioxidant osmolytes (proline, glycine betaine) and enzyme enzymes (superoxide dismutase, peroxidase) activities in root/shoot indicated that thermo-tolerant genotypes had the highest heat tolerance potential as they showed the greater increase in antioxidant enzyme and osmolytes activities as compared to the thermo-sensitive genotypes. Ionic attributes (calcium and magnesium) were least affected in thermo-tolerant genotypes whereas this trend was opposite for thermo-sensitive okra genotypes. Overall, it was concluded that heat/ high-temperature stress is very drastic for growth and development of okra genotypes at seedling stage and based upon cluster analysis membership genotypes Kiran-51, Punjab selection, Ikra-1, Sarsabaz, Sanum, Pen beauty, Sabaz pari and Green wonder were categorized as thermo-tolerant whereas, Shehzadi, Lush green, OK-1307, Anarkali and OK-1305 were moderate-tolerant, while Ikra-3, MF-03, Okra-7100, Cick-576, Pusa sawani, Okra-3, and Ikra-2 were categorized as thermo-sensitive okra genotypes.


Heat stress, Okra, Seedling, Screening, Thermo-tolerant, Thermo-sensitive


        i.        Abbruzzese, G., Beritognolo, I., Muleo, R., Piazzai, M., Sabatti, M., Mugnozza, G.S. & Kuzminsky, E. (2009). Leaf morphological plasticity and stomatal conductance in three Populus alba L. genotypes subjected to salt stress. Environmental and Experimental Botany, 66: 381-388.

ii.      Abd El-Kader A.A., Shaaban S.M. & Abd El-Fattah, M.S. (2010). Effect of irrigation levels and organic compost on okra plants (Abelmoschus esculentus L.) grown in sandy calcareous soil. Agriculture Biology and Journal of North America, 1: 225-231.

iii.    Aghamolki, M.T.K., Yusop, M.K., Oad, F.C., Zakikhani, H., Hawa, Z., Jaafar, S., Kharidah, S.M. & Hanafi, M.M. (2014). Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages. International Journal of Biological, Veterinary, Agricultural and Food Engineering, 8:2.

iv.     Aguyoh, J.N., Sibomana, I.C. & Opiyo, A.M. (2013).Water stress affects growth and yield of container grown tomato plants. Global Journal of Bio-Science and Biotechnology, 2(4): 461-466.

v.       Akram, M., Ashraf, M.Y., Ahmad, R., Waraich, E. A., Iqbal, J. & Mohsan, M. (2010). Screening for salt tolerance in maize (Zea mays l.) hybrids at an early seedling stage. Pakistan Journal of Botany, 42: 141-154.

vi.     Anjum, N.A., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S.S., Iqbal, M., et al. (2014). Lipids and proteins major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research, 22: 4099-4121.

vii.   Anjum, S.A., Umair, Z., Ali, T., Mohsin,N. Muhammad, A., Iftikhar, T., Tahira, & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: A review. Zemdirbyste-Agriculture, 104 (3): 267-276. 10.13080/z-a.2017.104.034.

viii. Apel, K. & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55: 1331-1341.

ix.     Ashraf, M., Athar, H.R., Haris, P.J.C. & Kwon, T.R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97: 45-110.

x.       Awasthi, R., Pooran, G., Neil C.T., Vincent, V., Kadambot, H.M.S., & Harsh, N. (2017). Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop and Pasture Science, 68(9): 823-841.

xi.     Bange, M., & Rose B. (2018). Managing heat stress in cotton. CottonInfo, 1-1.

xii.   Bates, L.S., Waldron and, R.P., Teaxe, I.W. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.

xiii. Benchasri, S. (2012). Okra (Abelmoschus esculentus (L.) Moench) as a Valuable Vegetable of the World. Ratarstvo povrtarstvo, 49:105-112.

xiv. Bita, C.E. & Gerats, T. (2013). Pant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in pant science, 4, 273.

xv.   Carpici, E.B., Celik, N. & Bayram, G. (2009). Effects of salt stress on germination of some maize (Zea mays L.) cultivars. African Journal of Biotechnology, 8: 4918-4922.

xvi. Chennupati, P., Philippe, S., & Wucheng, L. (2011). Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations. Journal of Agriculture and Food Chemistry, 59 (24): 13081-13088.

xvii.                       Choudhury, S., Panda, P., Sahoo, L. & Panda, S.K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant Signaling & Behavior. 8: e23681. doi: 10.4161/psb.23681.

xviii.                     Essemine, j., Saida, A. & Sadok, B. (2010). Impact of Heat Stress on Germination and Growth in Higher Plants: Physiological, Biochemical and Molecular Repercussions and Mechanisms of  Defence. Journal of Biological Sciences. 10 (6):565.572.

xix. Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M.Z., Alharby, H., Wu, C., Wang, D. & Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8:1147. doi: 10.3389/fpls.2017.01147.

xx.   Finka, A., Cuendet, A.F., Maathuis, F.J., Saidi, Y. & Goloubinoff, P. (2012). Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell, 24: 3333-3348. doi: 10.1105/tpc.112.095844.

xxi. Gilroy, S., Bialasek, M., Suzuki, N., Gorecka, M., & Devireddy, A.R. (2016). ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiology, 171: 1606-1615. doi: 10.1104/pp.16.00434.

xxii.                       Gomez, K.A & Gomez, A.A. (1984). Statistical Procedures for Agricultural Research, 2nd ed. John 430 Wiley and Sons, New York.

xxiii.                     Gorai, M., Ennajeh, M., Khemira, H. & Neffati, M. (2010). Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmite saustralis plants. Flora, 205: 462-470.

xxiv.                      Grieve, C.M. & Gratan, S.R. (1983). Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant and Soil, 70: 303-307.

xxv.                        Guan, Y.J., Hu, J., Wang, X.J. & Shao, C.X. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University of Science, 10: 427-433.

xxvi.                      Hajlaoui, H., El-Ayeb, N., Garrec, J. P. & Denden, M. (2010). Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Industrial Crops and Products, 31: 122-130.

xxvii.                    Hasanuzzaman, M., Nahar, K. & Fujita, M. (2013a). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and Responses of Plants under Salt Stress, Ahmad, P., Azooz., M.M., Prasad., M.N.V., Eds., Springer., New York, NY, USA,2013: 25-87.

xxviii.                  Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., & Fujita, M. (2013b). Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14(5): 9643-9684.

xxix.                      Hassine, A.B. & Lutts, S. (2010). Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. Journal of Plant Physiology, 167: 1448-1456.

xxx.                        Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H., Izaurralde, R.C., Ort, D., Thomson, A.M. & Wolfe, D.W. (2011). Climate impacts on agriculture: implications for crop production. Agronomy journal, 103: 351-370.

xxxi.                      Hemantaranjan, A. (2014). Heat stress responses and thermotolerance. Advances in Plants & Agriculture Research, 1: 1-10.

xxxii.                    Hemantaranjan, A., Bhanu, A.N., Singh, M.N., Yadav, D.K., Patel, P.K., Singh, R. & Katiyar, D. (2014). Heat Stress Responses and Thermotolerance. Advances in Plants and Agriculture Research, 1(3): 00012.

xxxiii.                  Jian-jun, Z., Xin-fu, B., Qing-mei, B. & Xiao-man, J. (2010). An analysis to the driving forces for water and salt absorption in roots of maize seedlings under salt stress. Agricultural Sciences in China, 9: 806-812.

xxxiv.                  Johnson, D.W., Smith, S.E. & Dobrenz, A.K. (1992). Genetics and phenotypic relationships in response to NaCl at different developmental stages in alfalfa. Theoretical and Applied Genetics, 83: 833-838.

xxxv.                    Kaushal, N.,  Kalpna B., Kadambot H.M.S., Harsh, N. & Manuel, T.M. (2016). Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture, 2:1. DOI: 10.1080/23311932.2015.1134380.

xxxvi.                  Keutgen, A.J. & Pawelzik, E. (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimental Botany, 65: 170-176.

xxxvii.                Khayat, P.N., Jamaati-e-Somarin, S., Zabihi-e-Mahmoodabad, R., Yari, A., Khayatnezhad, M. & Gholamin, R. (2010). Screening of salt tolerance canola cultivars (Brassica napus L.) using physiological markers. World Applied Sciences Journal, 10: 817-820.

xxxviii.              Kumar, S., Gupta, D. & Nayyar, H. (2012a). Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiologiae Plantarum, 34: 75-86.

xxxix.                  Lamont, W. (1999). Okra a versatile vegetable crop. Horticulture Technology, 9: 179-184.

xl.     Latef, A.A.H.A. & Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127: 228-233.

xli.   León-Sánchez, L., Nicolás, E., Nortes, P.A., Maestre, F.T., & Querejeta, J.I. (2016). Photosynthesis and growth reduction with warming are driven by nonstomatal limitations in a Mediterranean semi‐arid shrub. Ecology and Evolution, 6(9): 2725-2738.

xlii. Li, R., Shi, F. & Fukuda, K. (2010). Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environmental and Experimental Botany, 68: 66-74.

xliii.                       Li, Y., Li, H., Li, Y., & Zhang, S. (2017). Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. The Crop Journal, 5 (3): 231-239.

xliv.                       Martinez, V., Manuel, N.C., Maria, L.D., Reyes, R., Teresa, C.M., Francisco, G.S., Francisco, R., Pedro, A.N., Ron, M. & Rosa, M.R. (2018). Tolerance to Stress Combination in Tomato Plants: New Insights in the rotective Role of Melatonin. Molecules, 23: 535. doi:10.3390/molecules23030535.

xlv. Mathiba, M.T., Gangireddygari, V.S.R., Khayalethu, N. & Sheku, A.K. (2018) The potential of omics technologies as tools to understand the environmental factors influencing okra (Abelmoschus esculentus) growth and adaptation. South African Journal of Plant and Soil, 35(1): 1-8. DOI: 10.1080/02571862.2017.1335891.

xlvi.                       Matsumoto, K., Ohta, T. & Tanaka, T. (2005). Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables. Agricultural and Forest Meteorology, 132: 44-57.

xlvii.                     McCord, J.M. (2000). The evolution of free radicals and oxidative stress. American Journal of Medicine, 108: 652-659.

xlviii.                   Mickky, B.M. & Aldesuquy, H.S. (2017). Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes. Egyptian Journal of Basic and Applied Sciences, 4: 47-54.

xlix.                       Munns, R., James, R.A. & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025-1043.

l.        Nazar, R., Iqbal, N., Syeed, S., Khan, N.A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168(8): 807-15. doi: 10.1016/j.jplph.2010.11.001.

li.      Pospisil, P. & Prasad, A. (2014). Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. Journal of Photochemistry and Photobiology B. Biology, 137: 39-48.

lii.    Rejeb, I.B., Pastor, V. & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants, 3: 458-475. doi: 10.3390/plants3040458.

liii.  Roychoudhury, A., Basu, S. & Sengupta, D.N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 168: 317-328.

liv.   Rubio-Casal, A. E., Castillo, J.M., Luque, C.J. & Figueroa, M. E. (2003). Influence of salinity on germination and seeds viability of two primary colonizers of Mediterranean salt pans. Journal of Arid Environment, 53: 145-154.

lv.     Seckin, B., Turkan, I., Sekmen, A.H. & Ozfidan, C. (2010). The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barley grass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany, 69: 76-85.

lvi.   Shirdelmoghanloo, H., Lohraseb, I., Rabie, H.S., Brien, C., Parent, B., & Collins, N.C. (2016). Heat susceptibility of grain filling in wheat (Triticum aestivum L.) linked with rapid chlorophyll loss during a 3-day heat treatment. Acta Physiologiae Plantarum, 38: 208.

lvii. Silva, E.N., Ribeiro, R.V., Ferreira-Silva, S.L., Viegas, R.A. & Silveira, J.A.G. (2010). Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. Journal of Arid Environments, 74: 1130-1137.

lviii.                       Sita, K., Sehgal, A., HanumanthaRao, B., Nair, R. M., Vara, P., Kumar, S, Shiv, K., Pooran, M.G., Muhammad F., Kadambot, H.M.S.,  Rajeev, K.V. & Harsh, N. (2017). Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science, 8, 1658.

lix.   Suarez, L., Zarco-Tejada, P.J., Sepulcre-Canto, G., Perez-Priego, O., Miller, J.R. & Jimenez, J. C.M. (2008). Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sensing of Environment, 112: 560-575.

lx.     Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203: 32-43.

lxi.   Swapna, S., Korukkanvilakath S. & Samban, S. (2017). Screening for osmotic stress responses in rice varieties under drought condition. Rice Science, 24 (5): 253-263.

lxii. Tlig, T., Gorai, M. & Neffati, M. (2008). Germination responses of Diplotaxis harra to temperature and salinity. Flora, 203: 421-428.

lxiii.                       Tuteja, N. & Gill, S.S. (2013). Climate change and plant abiotic stress tolerance. Plant Biotechnology, 2013: 92-93.

lxiv.                       Wang, D., Heckathorn, S.A., Mainali, K. & Tripathee, R. (2016). Timing effects of heat-stress on plant ecophysiological characteristics and growth. Frontiers in Plant Science, 7: 1629.

lxv. Wolf, B. (1990). A comparative system of leaf analysis and its use for diagnosing nutrient status. Communications in Soil Science and Plant Analysis, 13: 1053-1059.

lxvi.                       Xia, X., Yuhan, T., Mengran, W. & Daqiu, Z. (2018). Effect of Paclobutrazol Application on Plant Photosynthetic Performance and Leaf Greenness of Herbaceous Peony. Horticulturae, 4: 5; doi:10.3390/horticulturae4010005.

lxvii.                     Xiong, L., & Zhu, J.K. (2002). Molecular and genetic aspects of pants response to osmotic stress. Pant cell. 14: 165-183.

lxviii.                   Zou, X., Hu, C., Zeng, L., Cheng, Y., Xu, M. & Zhang, X. (2014). A Comparison of Screening Methods to Identify Waterlogging Tolerance in the Field in Brassica napus L. during Plant Ontogeny. PLOS One, 9(3): e89731. doi:10.1371/journal.pone.0089731

Cite this Article: