Stomatal Penetration and Temporal Dynamics of Ingress of Two Fungal Isolates Associated with Leaf Spot Disease of JASMINE (Jasminum sambac L.)


Mark Paul S. Rivarez , Roy Ni?o R. Lucila , Pablito M. Magdalita ,

Download Full PDF Pages: 01-12 | Views: 790 | Downloads: 341 | DOI: 10.5281/zenodo.2574399

Volume 1 - August 2017 (08)


Jasmine (Jasminum sambac L.) is an ornamental crop grown in South and Southeast Asia for its flowers for garlands, tea and essential oil production. However, certain fungal foliar and floral diseases significantly reduce its yield. In this study, Colletotrichum sp.-like (cylindrical conidia) and Fusarium sp.-like (lunate conidia) isolates causing leaf spot disease were characterized based on the ingression process and fungal germination in planta. Four-day single-spore cultures in PDA of isolating C1 (Colletotrichum sp.-like) and F2 (Fusarium sp.-like) were obtained. Suspensions of 108 conidia mL-1 were made and sprayed onto young leaves of jasmine. Specimen collection was done at 2, 6, 12, 24, 36, 48, 60 and 72 h after inoculation (hai). Formalin-acetic acid was used to clear the tissues and fungal structures are selectively stained using lactophenol-acid fuschin. Average ingression sites (IS) were counted for each time point under 50X magnification, then IS per leaf area (cm2) was calculated. Fungal isolates remain at the surface of the leaf until 36 h. IS of C1 and F2 almost doubled at 48 hai. However, ingression sites declined at 72 hai for both pathogens, which either imply a progression of sub surface colonization or unsuccessful penetration. Leaf yellowing and a few spots were observed at 48 hai for F2 and at 60 hai for C1. More severe necrotic leaf spots with yellow halo (severity rating of 5) were seen in plants inoculated with Fusarium sp.-like isolated than in those inoculated with Colletotrichum sp.-like isolated. Lastly, at 48 to 60 hai, it was evident that the pathogen started to seek for stomata, which seemed to be the preferred penetration site for both fungal pathogens. 


Colletotrichum sp., Fusarium sp., Jasminum sambac L., leaf spot, Sampaguita


        i.            ABAWI, G.S. and J.W. LORBEER. 1971. Pathological histology of four onion cultivars infected by Fusarium oxysporum f.sp. cepae. Phytopathol. 61:1164-69.


      ii.            BELL, A.A. and M.H. WHEELER. 1986. Biosynthesis and functions of fungal melanins. Ann Rev Phytopathol. 24:411-451.


    iii.            BENHAMUO, N. and C. GARAND. 2001. Cytological analysis of defense-related mechanisms induced in pea root tissues in response to colonization by non- pathogenic Fusarium oxysporum Fo47. Phytopathol. 91(8): 730-740.


     iv.            BOENISCH, M.J. and W. SHAFER. 2011. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol. 11:110.


       v.            BOKE, N. H. 1968. Clearing and staining plant materials with lactic acid. Proc. of the Okla. Acad Sci. Subsection Botany p 1-2.


     vi.            GARDNER, R. O. 1975. An overview of the botanical clearing technique. Biotechnic and Histochem. 50(2):99-105.


   vii.            GOH, T.-K. 1999. Single-spore isolation using a hand-made glass needle. Fungal Div. 2:47-63.


 viii.            GOLD, R.E. and K. MENDGEN. 1984. Cytology of basidiospore germination, penetration and early colonization of Phaseolus vulgaris by Uromyces appendiculatus var. appendiculatus.  Canadian J Botany. 62(10): 1989-2002.


     ix.            GOSWAMI, R.S. and H.C. KISTLER. 2004. Heading for disaster: Fusarium graminearum on cereal rops. Mol Plant Pathol. 5(6): 515-525.


       x.            HOCH, H.C. 1977. Mycoparasitic relationships. III. Parasitism of Physalosphora obtuse by Calcarisporium parasiticum. Canadian J Botany. 55: 330-351.


     xi.            HOCH, H.C. and M.S. FULLER. 1977. Mycoparasitic relationships. I. Morphological features of interactions between Pythium acanthicum and several fungal hosts. Arch. Microbiol. 11: 207-224.


   xii.            HOWARD, R.J. and M.A. FERRARI. 1989. Role of melanin in appressorium function. Expt Mycol. 13:403-418.


 xiii.            KANG, Z. and H. BUCHNAUER. 1999. Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol. Res. 104(9):1083-1093.


 xiv.            KUMAR, V., V.P. GUPTA, A.M. BABU, R.K. MISHRA, V. THIAGARAJAN and R.K. DATA. 2001. Surface ultrastructural studies on penetration and infection process of Colletotrichum gloeosporioides on mulberry leaf causing black spot disease. J Phytopathol. 149 (11-12): 629-633.


   xv.            KUO, K.-C. 1999. Germination and appressorium formation in Colletotrichum gloeosporioides. Proc. Nat. Sci. Counc. ROC(B). 23(3):126-132.


 xvi.            LATUNDE-DADA, A.O., R.J. O’Connell, C. NASH and J.A. LUCAS. 1999. Stomatal penetration of cowpea (Vigna unguiculata) by a Colletotrichum species causing latent anthracnose. Plant Pathol. 48:777-785.


xvii.            LESLIE, J. F. and B. A. SUMMERELL. 2006. The Fusarium laboratory manual. Blackwell Publishing. 388 p.


xviii.            LIAO, C.-Y., M.-Y. CHEN, Y.-K. CHEN, K.-C. KUO, K.-R. CHUNG and M.-H. LEE. 2012. Formation of highly branched hyphae by Colletotrichum acutatum within the fruit cuticles of Capsicum spp. Plant Pathol. 61:262-270.


 xix.            MAGDALITA, P.M., M.J.C. DE LEON, R.C. SOTTO and K.S. POWER. 2013. Occurrence of pigmented flowers and variation in their morphological traits of irradiated and unirradiated sampaguita (Jasminum sambac L.). J Nat Studies. 12(2):45-53.


   xx.            MANANDHAR, J.B., G.L. HARTMAN and T.C. WANG. 1995. Conidial germination and appressorial formation of Colletotrichum capsici and C. gloeosporioides isolates from pepper. Plant Dis. 79:361-366.


 xxi.            MANDY, S., A. BANERJEE, J. TARAFDAR and S. ROY. 2009. Cytological analysis of defense related mechanisms induced in taro (Colocasia esculenta var antiquorum) leaf tissues in response to Phytophthora colocasiae infection. J. Root Crops. 35(2):196-205.


xxii.            MILES, T.D., WHARTON, P.S. and SCHILDER, A.C. 2009. Cytological and chemical evidence for an active resistance response to infection by Colletotrichum acutatum in 'Elliott' blueberries. Acta Hortic. 810:361-368.


xxiii.            RIMANDO, T.J. 2003. Jasmine production. In: Ornamental Horticulture: A little giant in the tropics. SEAMEO SEARCA and UPLB, College, Los Banos, Laguna, .Philippines, 333p.


xxiv.            SANCHEZ Jr., F.C., D. SANTIAGO and C.P. KHE. 2010. Production management practices of Jasmine (Jasminum sambac [L.] Aiton) in the Philippines. J. Inter. Soc.Southeast Asian Agric Sci. 16:126-136.


xxv.            SANCHEZ Jr., F.C., L. MOJICA and C.P. KHE. 2011. Post-harvest handling and marketing system of Jasmine (Jasminum sambac [L.] Aiton) in the Philippines. J. Inter. Soc.Southeast Asian Agric Sci. 17:152-167.


xxvi.            [SC-APS] Sourcebook Committee, American Phytopathological Society. 1967. Sourcebook of Laboratory Exercises in Plant Pathology. 388 p.


xxvii.            SPENCER, H. 1973. Tropical Pathology. Springer-Verlag, Berlin Heidelberg, Germany. 765 p.



xxviii.            WIKEE, S., L. CAI, N. PAIRIN, E.R.C. MCKENZIE, Y.-Y. SU, E. CHUKEATIROTE, H.N. THI, A.H. BAHKALI, M.A. MOSLEM, K. ABDELSALAM and K.D. HYDE. 2011. Colletotrichum species from Jasmine (Jasminum sambac). Fungal Diver. 46:171-182.

Cite this Article: