Impact of Blanching Pretreatment on the Quality Characteristics of Three Varieties of Oven Dried Eggplant (Solanum melongena L).


Onwuzuruike, Uzochukwu Anselm , Ndife Joel , Elija Idaresit , Ubbor Stella ,

Download Full PDF Pages: 15-26 | Views: 506 | Downloads: 174 | DOI: 10.5281/zenodo.3484473

Volume 3 - August 2019 (08)


Eggplant possesses appreciable reserve of nutrients and loads of phytochemical compounds. Processing will help minimize the wastage and increase consumption. In this study, three cultivars of eggplant were pre-treated, oven-dried and ground into coarse powders with the intent of retaining the nutrients. The functional properties, proximate, vitamin, mineral, phytochemical and anti-nutrient composition as well as the sensory characteristics were determined. The results showed that the eggplant powders had high water absorption capacity (6.90 - 11.50 ml/g), oil absorption capacity (11.20 - 11.70 ml/g), emulsion capacity (25.02 - 35.40 %) and wettability (11.00 - 15.50 sec).  However, pre-treatment was found to reduce the functional properties of the eggplant powders compared to the control samples. The level of moisture (5.40 - 6.15 %) and ash (7.50 - 8.00 %) content was increased by blanching pre-treatment with concurrent reduction in fat (1.85 – 1.45 %), crude fibre (12.75 – 11.93 %) and protein (13.05 – 11.35 %) content. The mineral content was found to be higher in the blanched samples with potassium being the major mineral. Blanching pre-treatment resulted in reducing vitamin content in the samples. The studied eggplant varieties are poor sources of thiamin (0.02 – 0.22 mg/100g), riboflavin (0.02 – 0.17 mg/100g) and tocopherol (0.16 – 0.46 mg/100g), but contained high retinol content (17.89 – 56.11 mg/100g) and significant amount of vitamin C (1.05 – 6.00 mg/100g). Similarly, pretreatment resulted in reduced phytochemical and antinutritional properties in the eggplant powders. Organoleptically, the eggplant powders had better appearance with no change in taste, but reduced preference in terms of texture, flavour and general acceptability. The eggplant powders can be utilized as functional ingredient for food enrichment


Eggplant, phytochemicals, anti-nutrients, functional properties, sensory


         i.        Adepeju, A. B., Gbadamosi, S. O., Adeniran, A. H. and Omobuwajo, T. O. (2011). Functional and pasting characteristics of breadfruit (Artocarpus altilisà flours. African Journal of Food Science 5(9):529-535.

ii.      A.O.A.C (2000). Official Methods of Analysis, Association of Official Analytical Chemists. Washington, D.C

iii.    Agoreyo, R. O., Obansa, E. S. and Obeanor, E. O. (2012). Comparative nutritional and phytochemical analysis of two varieties of Solanum melongena. Science World Journal, 7: 225-230.

iv.     Akiyama, H, Fujii, K, Yamasaki, O., Oono, T. and Iwatsuki, K. (2001). Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 48(4), 487- 491.

v.       Akuyili, D.O., Igwe, S.A. and Ogbogu, C.E. (2013). Effects of garden egg on some visual functions of visually active Igbos of Nigeria. Journal of Ethnopharmacology, 4: 25-40.

vi.     Asl, A. S. and Hussein, H. (2008). Review of pharmacological effects of glycorrhiza species and its bioactive compounds. Journal of Phytotherapy Resource.22(6):709-724.

vii.   Amandikwa, C. (2012). Proximate and functional properties of open air solar and oven dried cocoyam flour. International Journal of Agriculture and Rural Development. 15(2):988-994.

viii. Amaowo, E.U., Ndon B.A. and Etuk, E.U., (2000) Mineral and antinutrient in fluted pumpkin Telfera occidentalis Hook F,” Food Chemistry, 70, 235-240.

ix.     Chinedu, S. N., Olasumbo, A. C., Eboji, O. K., Emiloju, O. C., Arinola, O. K. and Dania, D. I. (2011). Proximate and phytochemical analysis of solanum aethiopicum L and Solanum Macrocarpon L. fruits. Research Journal of Chemical Sciences 1: 63-71.

x.       Clark, A. (2013). Report on effects of certain poisons in food plant of Africa upon health of native races. Journal of Tropical Medical Hygiene. 2013;39(2):285-2.

xi.     Duel, F., and Sturtz, C. (2010) Biochemistry of fruits and their products. Acatlenic Press London, (2nd ed.); 80–81.

xii.   Dobson, C. R. (2010). Medical natural product. A Biosynthetic Approach, 2nd ed. Willey and Sons. ;925-978.

xiii. Edem, C. A., Dounmu, M. I. Bassey, F. I., Wilson, C. and Umoren, P. (2009). A comparative Assessment of the proximate composition, Ascorbic Acid and Heavy metal content of two species of Garden egg (Solanum gilo and Solanum aubergine). Pakistan Journal of Nutrition, 8(5): 582-84.

xiv. Eze, S. O. and Kanu, C. Q. (2015) Assessment of the Phytochemical, Proximate, Vitamin and Mineral Composition of Solanum gilo L.  International Research Journal of Pure and Applied Chemistry 5(1): 83-90.

xv.   Hasslam E. (2008). Natural polyphenols (vegetable tannin) as possible mode of Action. Journal of Natural Product. 59:205-215.

xvi. Hayata, M., Alpaslan, M. and Bayer, A.D. (2006). Effect of drying on functional properties  of Tarhana. Int. J.Fd. Sci. Technol; 29:457- 462.

xvii.                       Helena, E. (2008). Iron imbalance can lead to clinical depression Journal of Health and Fitness, 42: 48-102.

xviii.                     Horbowicz, M., Kosson, R., Grzesiuk, A. and Bski, H. D. (2018). Anthocyanins of Fruits and Vegetables—Their Occur- rence Analysis and Role in Human Nutrition, Vegetable Crops Research Bulletin, 68(1):5-22.

xix. Huang, H.Y., C.K. Chang, T.K. Tso, J.J. Huang, W.W. Chang and Y.C. Tsai, 2004. Antioxidant activities of various fruits and vegetables produced in Taiwan. Int. J. Food Sci. Nutr., 55:423-429.

xx.   Iwe M.O (2010). Handbook of Sensory methods and analysis, 75-78. Enugu Nigeria Rejoint Communication Science Ltd.

xxi. Ndife, J., Fatima, K. and Stephen, F. (2014). Production and quality assessment of enriched          Cookies from whole wheat and full fat soya. European Journal of Food Science and Technology, 2(1):19-28.

xxii.                       Knapp S. (2011). Solanum Section Geminata (Solanacea). Floral Neotropica Monograh.;84 (1):1-405

xxiii.                     Lakshman R.B., 2012. Phytochemical screening, quantitative estimation total phenolics and total flavonoids, anti-microbial evaluation of Cyamopsistetragonoloba. IJRPBS, 3(3), 1139-1142.

xxiv.                      Mazza, G., Cacace, J.E, Kay C.D. (2004). Methods of analysis for common vegetables. Journal of Agricultural Food Chemistry, 44: 3426-3431.

xxv.                        McGuire, S. (2013). IOM (Institute of Medicine) and NRC (National Research Council). 2013. Supplemental Nutrition Assistance Program: Examining the Evidence to Define Benefit Adequacy. Washington, DC: The National Academies Press, 2013, Advances in Nutrition, 4 (4);477–478.

xxvi.                      NAFDAC, National Agency for Food, Drugs, Administration and Control (2012). Guidelines for Mineral Determination of Selected Fruit Samples.23-25

xxvii.                    Niba, L.L., Bokanga, M.,Jackson,F.I.,Schlimme, D.S. and Li, B.W.(2001). Physio-chemical. properties and starch granular characteristics of flour from various Manihot   esculenta (cassava) genotypes. J. Ed.Sc. 67: 1701.

xxviii.                  Nino-Medina, G., Urias-Orona, V., Dolore, M. and Jose,B. H. (2014). Structure and content of phenolics in eggplant (Solanum melongena)-a review. South African Journal of Botany, 111-161.

xxix.                      Noda Y, Kneyuki T, Igarashi K, Mori A, Packer L(2000) Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology. 2000 Aug 7;148(2-3):119-23.

xxx.                        Offor, C.E., 2015. Determination of vitamin composition of Dissotis rotundifolia leaves.International Journal of Current Microbiology and Applied Sciences, 4(1): 211.

xxxi.                      Offor, C.E.  and Igwe, S.U. (2015) Comparative Analysis of the Vitamin Composition of Two Different Species of Garden Egg (Solanum aethiopicum and Solanum macrocarpon).World Journal of Medical Sciences 12 (3): 274-276.

xxxii.                    Okwu D. E. (2005) Evaluation of the phytonutrients, mineral and vitamin content of some varieties of Yam (Discorea spp). International Journal of Molecular Medicine and Advances in Science.22:1999– 203.

xxxiii.                  Ojinaka, M.C.,   Akobundu, E.N.T. and  Iwe, M.O. ( 2009). Cocoyam starch modification effects on functional, sensory and cookies qualities. Pak. J. Nutr., 8: 558-567.

xxxiv.                  Okwu, D.E. and C. Josiah, (2006). Evaluation of the Applied Sciences, 4(1): 211. Chemical composition of two Nigerian medicinal plants. African Journal of Biotechnology, 4: 357-361.

xxxv.                    Olaleye M.T. (2007). Cytotoxicity and antibacterial activity of methanolic extract of Hibiscus sabdariffa. J. Med. Plants Res., 1(1), 009-013.

xxxvi.                  Onimawo, A.I. and Akubor, P.I. (2005). Functionalproperties of food. In: Food Chemistry. Integrated approachwith Biochemical Background. Ambik PressLimited, Benin City, Nigeria, pp208-221.

xxxvii.                Onimawo, A.I. and Egbekun, K.M. (1998). Comprehensive Food Science and Nutrition. Revised edn Grace Foundation publication, Jos. pp200-208;

xxxviii.              Onwuka, G. I. (2014). Food Science and Technology. Naphtali Prints, Lagos.

xxxix.                  Onwuka, G. I. (2018). Food Analysis and Instrumentation: Theory and Practice (2nd Ed.). Naphtali Prints, Lagos. 179-228.

xl.     Osagie A. U. (2011). Antinutritional factors in nutritional quality of plant foods, Ambik. Press Benin City, Nigeria;

xli.   Osei, M. K., Banful, I. B. and Oluoch, M. O. (2012). Characterization of African eggplant for morphological characteristics. Journal of Agric-Science Technology. 2012;(3):33-37

xlii. Ossamulu, I. F., Akanya, H. O., Jigam, A. A., Egwim, E. C., Adeyemi, H. Y. (2014). Hypolipidemic Properties of Four Varieties of Eggplants (Solanummelongena L.) International Journal of Pharmaceutical Science, 3(8): 47-54.

xliii.                       Rodriguez-Amaya, D. B. and Kimura, M. (2004). Harvest Plus handbook for carotenoid analysis (vol. 2). Washington, DC: International Food Policy Research Institute (IFPRI). 33 – 42.

xliv.                       Rodriguez-Jimenez, J. R., Amaya-Guerra, C. A., Baez-Gonzalez J. G., Aguilera-Gonzalez, C., Urias-Orona, V. and Nino-Medina, G. (2018) Physicochemical, Functional, and Nutraceutical Properties of Eggplant Flours Obtained by Different Drying Methods. Molecules, pp. 2312 – 3210.

xlv. Rutkowski K.J. (2010) Spectrophotometric method of vitamin quantification in foods Chapman and Hall, New York. 98-118.

xlvi.                       Sanchez-Mata, M. C., Wallace, Y., Hong, Y. and Jaime, P. (2010). α-Solasonine and α-Solamargine contents of Gboma (Solanum macrocarpon L.) eggplants. Journal of Agricultureal and Food Chemistry 58(9):5502-5508.

xlvii.                     Usunobun, U. and Okolie, P. N. (2015). Phytochemical analysis and mineral composition of Anona muricata leaves. International Journal of research and current development, 1(1),38-42.

xlviii.                   Uthumporn, U.; Fazilah, A.; Tajul, A.; Maizura, M.; Ruri, A. (2016). Physico-chemical and antioxidant properties of eggplant ?our as a functional ingredient. Adv. J. Food Sci. Technol. 2016, 12, 235–243.

xlix.                       Vance, C. P., Claudia, U. and Deborah, A. (2003). Phosphorous acquisition and use: Critical adaptations by plants for seuring a non-renewable resource. New Phytologist 157 (3):423 – 447.

Cite this Article: