A Review of Soil Contamination and Remediation on Basis of Case Studies


Sadam Hussain , Danish Ali , Sarwan Khan , Yousaf Yahya Ali Sewar , Bounthong Pialuang ,

Download Full PDF Pages: 77-87 | Views: 593 | Downloads: 180 | DOI: 10.5281/zenodo.3484259

Volume 3 - June 2019 (06)


Soil contamination has increased over the past few decades, mainly due to petroleum hydrocarbons, heavy metals, pesticides application, industrial wastes, and human activities. Suitable and standardized monitoring and remediation strategies are required to minimize soil contamination. In this sense, in the most recent decade, there has been a developing innovative technology on the usage of residues and waste materials, originating from various industries, many remediation innovations (Chemical degradation, photo- degradation) and bioremediation to clean polluted soils. The purpose of this article is to collect contributions from outstanding researches and experts involved in various fields of soil contamination and soil degradation with some case studies to highlights and future developments in the context of contaminated soil monitoring and remediation strategies. The article is planned into six topics containing an introduction, soil pollution, types and sources of soil pollution, soil contamination and degradation, soil remediation and some case studies. I hope that the composed data will be beneficial to soil contamination researchers, (e.g., geologists, engineers, and biologists to get an overview of soil contamination and degradation


Soil Contamination-Soil Degradation- Soil Remediation- Case Study


                         i.            Anabela Cachada (Soil and Pollution: An Introduction to the Main Issues) http://www.eschooltoday.com

      ii.            www.conservationinstitute.org

    iii.            N. Brady, R. Weil, The Nature and Properties of Soils, fourteenth ed., Prentice Hall, Upper Saddle River, NJ, 2008.

     iv.            J. Bone, M. Head, D. Barraclough, M. Archer, C. Scheib, D. Flight, N. Voulvoulis, Soil quality assessment under emerging regulatory requirements, Environ. Int. 36 (2010) 609622.

       v.             D.L. Karlen, M.J. Mausbach, J.W. Doran, R.G. Cline, R.F. Harris, G.E. Schuman, Soil quality: a concept, definition, and framework for evaluation (a guest editorial), Soil Sci. Soc. Am. J 61 (1997)

     vi.            D.C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry,Bioavailability and Risks of Metals, second ed., Springer, New York, 2001

   vii.            B. Knopf, H. König, Biomethylation of Heavy Metals in Soil and Terrestrial Invertebrates: Soil Heavy Metals, Springer, Berlin/Heidelberg, 2010, pp.315–328

 viii.            S. Bhattacharya, K. Gupta, S. Debnath, U.C. Ghosh, D. Chattopadhyay, A.Mukhopadhyay, Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: a review of the perspectives for environmental health, Toxicol. Environ. Chem. 94 (2012429–441

     ix.            P. Loganathan, M.J. Hedley, N.D. Grace, Pasture soils contaminated with fertilizer derived cadmium and fluoride: livestock effects, Rev. Environ. Contam.Toxicol. 192 (2008) 29–66

       x.             U. Pietrzak, N. Uren, Remedial options for copper-contaminated vineyard soils, Soil Res. 49 (2011) 44–55

     xi.            D.C. Adriano, W.W. Wenzel, J. Vangronsveld, N.S. Bolan, Role of assisted natural remediation in environmental cleanup, Geoderma 122 (2004) 121–142

   xii.            Soil and Land Pollution (J.F. Artiola, J.L. Walworth, S.A. Musil and M.A. Crimmins)

 xiii.            N.S. Bolan, D.C. Adriano, R. Naidu, Role of phosphorus in (im)mobilization and

 xiv.            bioavailability of heavy metals in the soil–plant system, Rev. Environ. Contam.Toxicol. 177 (2003) 1–44

   xv.            J.N. Galloway, J.D. Thornton, S.A. Norton, H.I. Volchok, R.A.N. McLean, Tracemetals in atmospheric deposition – a review and assessment, Atmos. Environ.16 (1982) 1677–1700

 xvi.            C.W. Gray, R.G. McLaren, A.H.C. Roberts, Atmospheric accessions of heavy metals to some New Zealand pastoral soils, Sci. Total Environ. 305 (2003)105–11

xvii.            J.E. Ferguson, J. Gavis, A review of the arsenic cycle in natural waters, Water Res. 6 (1972) 1259–1274

xviii.            S. Mahimairaja, N.S. Bolan, D. Adriano, B. Robinson, Arsenic contamination and its risk management in complex environmental settings, Adv. Agron. 86(2005) 1–82.

 xix.            H. Yan-Chu, Arsenic distribution in soils, in: J.O. Nriagu (Ed.), Arsenic in the Environment: Part I. Cycling and Characterization, John Wiley & Sons Inc.,New York, 1994, pp. 17–49

   xx.            G. Yu, D. Sun, Y. Zheng, Health effects of exposure to natural arsenic in groundwater and coal in China: an overview of occurrence, Environ. Health Perspect.115 (2007) 636–642

 xxi.            M.A. Armienta, R. Rodriguez, O. Cruz, Arsenic content in hair of people exposed

xxii.            to natural arsenic polluted groundwater at Zimapan, Mexico, Bull. Environ.Contam. Toxicol. 59 (1997) 583–589.

xxiii.            L.M. Del Razo, M.A. Arellano, M.E. Cebrian, The oxidation states of arsenic in well-water from a chronic arsenicism area in northern Mexico, Environ.Pollut. 64 (1990) 143–153

xxiv.            K.S. Dhillon, S.K. Dhillon, Quality of underground water and its contribution towards selenium enrichment of the soil–plant system for a seleniferous region of northwest India, J. Hydrol. 272 (2003) 120–130

xxv.            W.T. Frankenberger Jr., M. Arshad, Bioremediation of selenium contaminated sediments and water, Biofactors 14 (2001) 241–254

xxvi.            J.C. Varekamp, P.R. Buseck, Global mercury flux from volcanic and geothermal sources, Appl. Geochem. 1 (1986) 65–73

xxvii.            J. Fenger, Air pollution in the last 50 years – from local to global, Atmos.Environ. 43 (2009) 13–22

xxviii.            R.J. Haynes, G. Murtaza, R. Naidu, Inorganic and organic constituents and contaminants in biosolids: implications for land application, Adv. Agron. 104 (2009) 165–267

xxix.            M.J. McLaughlin, K.G. Tiller, R. Naidu, D.P. Stevens, Review: the behavior and environmental impact of contaminants in fertilizers, Aust. J. Soil Res. 34 (1996) 1–54

xxx.            R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecol. 2011 (2011) 1–20

xxxi.            A.M. Wightwick, S.A. Salzman, S.M. Reichman, G. Allinson, N.W. Menzies,

xxxii.            Effects of copper fungicide residues on the microbial function of vineyard soils, Environ. Sci. Pollut. Res. 20 (2013) 1574–1585.

xxxiii.            D.A. Heemsbergen, M.J. McLaughlin, M. Whatmuff, M.S.J. Warne, K. Broos,M.J. Bell, D. Nash, G. Barry, D. Pritchard, N. Penney, Bioavailability of zinc andcopper in biosolids compared to their soluble salts, Environ. Pollut. 158 (2010)1907–1915.

xxxiv.            A.M. Wightwick, S.A. Salzman, S.M. Reichman, G. Allinson, N.W. Menzies,Inter-regional variability in environmental availability of fungicide derived copper in vineyard soils: an Australian case study, J. Agric. Food Chem. 58(2010) 449–457

xxxv.            Soil Jerry L. Hatfield, ... Richard M. Cruse, in Advances in Agronomy, 2017

xxxvi.            www.environment.nsw.gov.au/topics/land-and-soil/soil-degradation

xxxvii.            REMEDIATION OF POLLUTED SOILS(E. Lombi, R.E. Hamon, in Encyclopedia of Soils in the Environment, 2005)

xxxviii.            www.spokaneenvironmental.com

xxxix.            FRTR (Federal Remediation Technologies Roundtable), 2017. Remediation Technologies Screening Matrix and Reference Guide, Version 4.0. https://frtr.gov/matrix2/section1/toc.html. (Accessed 28 June 2017).

     xl.            Khan, F., Husain, T., Hejazi, R., 2004. An overview and analysis of site remediation technologies. J. Environ. Manag. 71, 95e122. https://doi.org/10.1016/j.jenvman.2004.02.003

   xli.            https://www.eea.europa.eu/data-and-maps/figures/remediation-technologies

 xlii.            Vidonish, J.E., Zygourakis, K., Masiello, C.A., Sabadell, G., Alvarez, P.J.J., 2016b.Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering 2, 426e437. https://doi.org/10.1016/j.eng.2016.04.005.

xliii.            Stefan Demcak, Magdalena Balintova  2015 (Overview of chosen techniques and methods for soils remediation)

xliv.            R.L Johnson et al. (1993). An Overview of In Situ Air Sparging. Groundwater Monitoring &Remediation. Vol. 13 (Is. 4). 127-135. DOI: 10.1111/j.1745-6592.1993.tb00456.x

 xlv.            K.T. Jarvinen, E.S.Melin, and J.A. Puhakka. (1994). High-rate bioremediation of chlorophenol contaminated groundwater at low temperatures. Environmental Science & Technology. Vol. 28,2387-2392.

xlvi.            R.E. Hoeppel, R.E. Hinchee. (1994).Enhanced biodegradation for on-site remediation of contaminated soils and groundwater. In: Hazardous Waste Site Soil Remediation: Theory and Application of Innovative Technologies. D.J. Wilson and A.N. Clarke (eds). New York, NY: M.Dekker.

xlvii.            J. Vangronsveld, R. Herzig, N. Weyens, J. Boulet, K. Adriaensen, A. Ruttens, T.Thewys, A. Vassilev, E. Meers, E. Nehnevajova, D. Van der Lelie, M. Mench,Phytoremediation of contaminated soils and groundwater: lessons from the field, Environ. Sci. Pollut. Res. 16 (2009) 765–794.

xlviii.            H.A. Elliott, L.M. Herzig, Oxalate extraction of Pb and Zn from polluted soils:

                                                              i.      solubility limitations, J. Soil Contam. 8 (1999) 105–116

xlix.            T. Makino, K. Sugahara, Y. Sakurai, H. Takano, T. Kamiya, K. Sasaki, T. Itou, N.Sekiya, Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals, Environ. Pollut. 144 (2006)2–10.

        l.            T. Makino, T. Kamiya, H. Takano, T. Itou, N. Sekiya, K. Sasaki, Y. Sugahara,Y. Maejima, Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: verification of on-site washing, Environ. Pollut. 147(2007) 112–119.

      li.            L.A. Oste, J. Dolfing, W.C. Ma, T.M. Lexmond, Effect of beringite on cadmiumand zinc uptake by plants and earthworms: more than a liming effect? Environ. Toxicol. Chem. 20 (2001) 1339–1345

    lii.            J. Kumpiene, P. Desogus, S. Schulenburg, M. Arenella, G. Renella, E. Brännvall, A. Lagerkvist, L. Andreas, R. Sjöblom, Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover, Environ. Sci. Pollut. Res. (2013),http://dx.doi.org/10.1007/s11356-013-1818-3

  liii.            A. Ruttens, M. Mench, J.V. Colpaert, J. Boisson, R. Carleer, J. Vangronsveld, Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals, Environ. Pollut. 144 (2006) 524–532.

   liv.            J.A. Ryan, K.G. Scheckel, W.R. Berti, S.L. Brown, S.W. Casteel, R.L. Chaney, J.Hallfrisch, M. Doolan, P. Grevatt, M. Maddaloni, D. Mosby, Reducing children’s risk from lead in soil, Environ. Sci. Technol. 38 (2004) 18A–24A

     lv.            K.G. Scheckel, J.A. Ryan, Spectroscopic speciation and quantification of lead in phosphate-amended soils, J. Environ. Qual. 33 (2004) 1288–1295.

Cite this Article: