Effect of silicon application on four indigenous Zea mays L. varieties for agro-ecological carbon sequestration potential in Nigeria.


Ononyume, Martin Ogheneriruona , Edu, Esther Aja Bassey ,

Download Full PDF Pages: 48-58 | Views: 582 | Downloads: 181 | DOI: 10.5281/zenodo.3484251

Volume 3 - June 2019 (06)


Phytoliths have the ability to sequester carbon during their formation in plants as a result of absorption of soluble silicon in the form of monosilicic acid in their tissues. The effect of silicon application on phytolith production in four locally farmed varieties of Zea mays L. was investigated in the botanical garden, University of Calabar, Nigeria. Four levels of silicon 0 mg, 2500 mg, 5000 mg, and 7500 mg were added to soil in polythene bags in which seeds of four varieties of Z. mays L.; 91 SUWANI, TZL COMP 4, DT STR Y SYN 2 and IWO SYN C2 were planted. Wet oxidation method was used in the extraction of phytoliths from the leaves of the test plants. The concentration of silicon affected the phytolith quantity of the different varieties significantly (P = 0.05). The highest quantity of phytoliths was recorded in plants treated with 7500 mg silicon concentration. A total of 654 phytoliths were counted making up 26 morphotypes. Phytolith morphotypes were identified using the International Code for Phytolith Nomenclature (ICPN) descriptors. Phytolith morphotypes identified include cross, fusiform, rectangle and elongate which also ranked the highest in abundance with 91, 87, 85, and 70 phytoliths respectively in the four varieties while acicular, unciform, stellate and carinate morphotypes were amongst the least in abundance. Unidentified phytoliths comprised 1.53 percent of the total number of phytoliths counted. Four morphotypes; cross, cuneiform, elongate, and rectangle occurred in all four varieties studied. The results obtained from this study indicate that increased availability of silicon enhanced the phytolith production of the four varieties studied, therefore its implication in carbon sequestration. The opinion here is that the number of phytoliths will positively affect the amount of carbon occluded by the plant


Silicon, carbon, phytoliths, maize, concentration, sequestration, agro-ecology, Cross River


                         i.            Ali, A., Basra, S. M. A., Ahmad, R. & Wahid, A. (2009). Optimizing silicon application to improve salinity tolerance in wheat. Soil and Environment, 28,136-144.

      ii.            Andrade, F. A., Andrade, J. O., Andrade, C. G. T. J. & Miglioranza, E. (2014). Accumulation of silicon and arrangement and shapes of silica bodies in corn leaves. Genetics and Molecular Research, 13(1), 1690-1696.

    iii.            Deren, C. W. (2001). Plant genotype, silicon concentration, and silicon related responses. In: Datnoff L.E., Snyder G.H. & Korndorfer G.H. (eds.), Silicon in agriculture. Studies in Plant science, 8.  Amsterdam, Elsevier.

     iv.            Edu, E. A., Nsirim, L. E., Ononyume, M. O. & Nkang, A. E. (2014). Carbon credits assessment in a mixed mangrove forest vegetation of Cross River estuary, Nigeria. Asian Journal of Plant Science and Research, 4(4), 1-12.

       v.            Epstein, E. (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641- 664.

     vi.            Hart, J. P., Brumbach, H. J. & Lusteck, R. (2007). Extending the phytolith evidence for early maize (Zea mays ssp. mays) and Squash (Curcubita sp.) in Central New York. American Antiquity, 72(3), 563-583.

   vii.            Henriet, C., Draye, X., Oppitz, I., Swennen, R. & Delvaux, B. (2006). Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil, 287, 359-374.

 viii.            Hodson, M. J., White, P. J., Mead, A. & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96, 1027-1046.

     ix.            Hoffert, M. I., Caldeira, K., Benford, G., Criswell, D. R., Green, C., Herzog, H., Jain, A. K., Kheshgi, H. J., Schlesinger, M. E., Volk, T. & Wigley, T. M. L. (2002). Advanced technology paths to global climate stability: energy for a greenhouse planet. Science, 298, 981-987.

       x.            Li, Z. M., Song, Z. L. & Jiang, P. K. (2013). Biogeochemical sequestration of carbon within phytoliths of wetland plants: A case study of Xixi wetland, China. Chinese Science Bulletin, 58, 2480-2487.

     xi.            Ma, J. F. & Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Amsterdam, Elsevier.

   xii.            Ma, J. F. & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397.

 xiii.            Madella, M., Alexandre, A. & Ball, T. (2005). International Code for Phytolith Nomenclature 1.0. ICPN WORKING GROUP. Annals of Botany, 96, 253-260.

 xiv.            Marcias, F. & Arbestain, M. C. (2010). Soil carbon sequestration in a changing global environment. Mitigation and Adaptation Strategies for Global Change, 15, 511-529.

   xv.            Mitani, N. & Ma, J. F. (2005). Uptake system of silicon in different plant species. Journal of Experimental Botany, 56, 1255-1261

 xvi.            Mulholland, S. C., Rapp, G., Ollendorf, A. L. & Regal, R. (1990). Variation in phytoliths within a population of corn (Mandan Yellow Flour). Canadian Journal of Botany, 68, 1638-1645.

xvii.            Namaganda, M., Lye, K. A., Friebe, B. & Heun, M. (2009). Leaf anatomical characteristics of Ugandan species of Festuca L. (Poaceae). South African Journal of Botany, 75, 52-59.

xviii.            Parr, J. F., & Sullivan, L. A. (2005). Soil carbon sequestration in phytoliths. Soil Biology and Biochemistry, 37, 117-124.

 xix.            Piperno, D. R. (2006). Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham, MD: AltaMira Press.

   xx.            Prychid, C. J., Rudall, P. J. & Gregory, M. (2004). Systematics and biology of silica bodies in Monocotyledons. Botanical Review, 69, 377-440.

 xxi.            Rajendiran, S., Vassanda, M. C., Kundu, S. A., Dotaniya, M. L. & Subba, R. A. (2012). Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Current Science, 103, 911-920.

xxii.            Song, Z. L., Liu, H. Y., Si, Y. & Yin, Y. (2012). The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Global Change Biology, 18, 3647-3653.

xxiii.            Street-Perrott, F. A., & Barker, P. A. (2008). Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surface Processes and Landforms, 33, 1436-1457.

xxiv.            Zuo, X. X. & Lü, H. Y. (2011). Carbon sequestration within millet phytoliths from dry-farming of crops in China. Chinese Science Bulletin, 56, 3451-3456.

Cite this Article: